
Method Selection & Planning

Group 18

Team B

Olivia Betts
Zac Bhumgara

Nursyarmila Ahmad Shukri
Cameron Duncan-Johal

Muaz Waqas
Oliver Northwood

Teddy Seddon



Software Engineering Methods

Our team uses Agile software development as our software engineering method:
● Short development cycles are used in the agile project management technique,

which prioritises continuous improvement in the creation of products and services.
● Requirements and solutions are developed in collaboration amongst self-organising

cross-functional teams.
● We chose this to ensure we were constantly checking the code we had produced

against the requirements.
● Other development methodologies considered but ultimately discarded were the

waterfall method (outdated and not useful for changing requirements) and spiral
(ideal for large, risky projects - neither of which this is).

For our game engine we chose to use LibGDX:
● This was the game engine which after our research, we found to be easiest to

integrate along with third party libraries.
● The relevant third party libraries all had thorough documentation available online too,

thereby helping to mitigate the R_LIBRARIES risk.
● In general the majority of the LibGDX framework is written in Java, which our whole

team is skilled at.
● We considered LitiEngine, but decided against it, as the guidance available online

was more thorough for LibGDX.

For our IDE, we used IntelliJ Idea:
● IntelliJ IDEA is one of the recommended IDEs from the LibGDX site. There was a lot

of functional support available from LibGDX in general.
● IntelliJ can also integrate a project from Github (our chosen repo), so it would be very

simple to update our existing codes and commit and push any changes.
● IntelliJ also has colour coded specific data types and comments and can generate

any methods, constructors and javadocs automatically. This helped to mitigate the
R_FUTURE_PROOF risk; commenting the code was simpler.

● We considered using Visual Studio Code, but as IntelliJ was developed specifically
for Java, it proved to have more machine intelligence.

● The ‘refactor’ element in IntelliJ was particularly useful as it allowed us to change the
names of packages and classes and any places where that name would change
automatically.

For our Version Control System, we used Github:
● This helped to avoid code collisions and made sure that they do not adversely affect

the main branch of the code. This helped to mitigate the R_COMMIT risk.
● Github, as a form of Cloud storage, was used to store our code files. This made

collaboration on our project easier.
● Multiple people could work on the same codebase simultaneously, which again

encouraged remote cooperation.
● As mentioned before, Github can integrate into IntelliJ, making it very easy to push

and pull changes.



For communication, we used Discord and Gmail:
● We chose Discord because it proved to be the form of communication which

everyone was familiar with.
● Discord allows separate channels for different topics - subsequently we created

different channels for each of the deliverables.
● Discord offers a voice channel in which we would occasionally host online meetings,

especially during times when people were not at university, over the holidays.
● Another useful feature is the ‘share screen’ feature as it allows better collaboration

during any online meetings.
● Our group email would send an email message to everyone at once so everyone

receives any new updates through email. In this way we were also able to address
the group as a whole

● Having two separate methods of communication helped mitigate the R_COMMS risk,
as if someone was not replying on Discord then we could contact them by email and
vice versa.

For storage and collaboration of our deliverables, we used Google Docs:
● The version control functionality allows multiple people to edit the same document.
● The documentation is all stored in a shared Google Drive, so they can be accessed

easily and from multiple devices.
● As a form of Cloud storage, these were accessible from anywhere and were a

backup to the local copies saved on our devices. They could be recovered from here
in case a file is accidentally deleted. This helped to mitigate the R_DELETE risk.

● Another bonus of using Google Docs was that the files can easily be downloaded to
.pdf format, which was the required format for the deliverables.

● We also used Google Sheets to create the Gantt chart for our project. This was
easiest to implement and also easy to alter and clone for any further Gantt charts.

● We considered using OneDrive, however it took longer to set-up and more difficult to
ensure everyone had access, therefore opted for Google Docs instead.

● We also considered using Microsoft Word, but again opted for the collaborative
element over the slightly extra functionality.

To create the behavioural and structural diagrams for the UML for our architecture, we used
PlantUML:

● This proved to be one of the easiest tools to produce accurate UML diagrams, with
extensive guidance online and in our Q&As.

● We considered LucidChart due to its link to Google Drive, but decided against it, due
to PlantUML’s ease of use and available guidance.



Team Organisation

Our team split into smaller sub-groups, each of which focused on one section of the
deliverables. We then had one spokesperson (Zac Bhumgara) who coordinated
communication with the customer, for example, emailing to check about the requirements, as
well as between sub-groups. It was important to have one main point of contact, as
otherwise multiple people might have been sending the same messages separately to the
customer.

In these sub-groups, each organised themselves, whether that was working in a pair, or
working in up to a group of 4. This was ideal, as it meant a sub-group could meet and
discuss their specific problems without having to coordinate the entire group to do so. This
approach worked for the project as a team of 7 people would have been too large for
everyone to try and know everything happening at once. It would also have been
unnecessary - for example, the method selection and planning requirement was too small for
7 people to work on at once.
The majority of sub-groups had 2 or more people. This meant that if one person was unable
to complete their portion of the work - for whatever reason - there was at least one other
person able to step in and do it. The exception to this was the website, which was worked on
by just Olivia Betts. However, in this case the site code was also entirely on Github and
documented, so another person could easily take up the work if they couldn’t complete it.

We organised ourselves as follows:

Website Olivia Betts

Requirements Olivia Betts, Zac Bhumgara, Nursyarmila
Ahmad Shukri

Architecture Oliver Northwood, Nursyarmila Ahmad
Shukri, Muaz Waqas, Teddy Seddon

Method selection and planning Nursyarmila Ahmad Shukri, Cameron
Duncan-Johal

Risk assessment and mitigation Olivia Betts, Cameron Duncan-Johal

Implementation Muaz Waqas, Oliver Northwood, Zac
Bhumgara, Teddy Seddon

This meant we could ensure everyone got a fair share of the work, so nobody was given too
little or too much (a number that worked out to ~12.8 marks of work per person)



Key Tasks

Task Start date End date Dependencies

Requirements
Elicitation

16/11/22 30/11/22 N/A

Initial Architecture 23/11/22 30/11/22 Requirements
elicited (doesn’t
have to be perfectly
finalised)

Risk Assessment 7/12/22 14/12/22 N/A

Implementation 18/1/23 31/1/23 Requirements,
Architecture

Architecture
evaluation

25/1/23 31/1/23 Implementation,
Initial architecture

(We have also made a Gantt chart laying this out visually, which can be found on our website
TeamBEng1.github.io )

The above chart uses very broad definitions of key tasks. We found this suited our way of
working best, with individual smaller teams being able to dedicate the time they saw fit to
complete the work in ways that worked for them, whilst remaining within the overall deadline.

As an example, the Risk Assessment was further split into two key tasks:

Task Start date End date Dependencies

Identify risks 7/12/22 8/12/22 N/A

Risk writeup 9/12/22 14/12/22 Identify risks

Splitting of tasks:

Similarly, the requirements were also split up into key tasks. This included the customer
meeting, from which the requirements are elicited. Each UR, FR and NFR is then outlined
(and given a specific ID). At the end of the requirements section, the final key task would be
to consider use cases, and see if the requirements match up in each instance.

For architecture, we planned to create an initial architecture design at the start. This would
depend on the requirements (as the classes we would design would be based on what the
customer is asking for). So at the start, we created some diagrams for how the game should
look like and following from this we made some CRC cards, showing the different classes,
responsibilities and collaborations in the game. Alongside the implementation, we then

http://teambeng1.github.io


began creating the final version of the architecture. As expected, there were major changes
from our initial design; these changes were identified and the transitions were justified. At the
end of our implementation, we added some of the classes into the architecture which we
were not able to implement but were part of the requirements.

For methodology and planning, at the start of the project we selected our chosen software
engineering method and planned out the whole project by developing a Gantt chart. Further
on from that, we would create a weekly ‘to-do list’ so that everyone in the group had a goal
to work towards before our next meeting. This would ensure that no-one remains idle,
because they don’t know what else they can do. Further Gantt charts were made weekly to
remind ourselves of where we should be, and in case we had to catch up. These can be
found on the website, for which the link is posted above.

For implementation, planning was especially important. Implementation was dependent on
the initial architecture, so it was of utmost importance that the initial architecture design was
complete before the intended start date of the implementation. Alongside coding the game, it
was important to document at the same time, using Javadocs and comments. This would
ensure that other members of the implementation team would be able to understand what
the code is trying to achieve.
During the implementation, before starting to use a specific library, we researched its
licensing online. If the licensing allowed us to use it, we added it to our project and made a
note of it in the implementation document. Moreover, at the end of the implementation we
looked back upon the requirements and identified which of them we did not/were unable to
implement. Again we noted this down in our implementation documentation.

Importance of tasks:

We dedicated a priority of tasks to each task. Usually, any tasks which dictate a further task
were regarded as high priority. We would ensure that these were completed before their
deadlines, so that it does not lead to a ‘lag’ towards starting the next task.

In our project, we identified the requirements elicitation as being high priority (as the initial
architecture depended on it). The initial architecture itself was also high priority, as it dictated
how we would start to actually implement the game. The implementation itself was
recognised as important as it involved making the product which the customer expects by
the end of the deadline. For this reason, it was given the longest share of time.

Critical Path:

The critical path is a modelling method which determines the optimal and chronological
timeline to complete your project. In this case, we identified the critical path to be
Requirements Elicitation → Risk Assessment → Initial Architecture Design →
Implementation → Review → Final Architecture Design



Bibliography:
https://www.wrike.com/project-management-guide/faq/what-is-critical-path-in-project-manag
ement/


